Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Biomol Struct Dyn ; : 1-13, 2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-2239412

ABSTRACT

COVID-19 is a worldwide health crisis seriously endangering the arsenal of antiviral and antibiotic drugs. It is urgent to find an effective antiviral drug against pandemic caused by the severe acute respiratory syndrome (Sars-Cov-2), which increases global health concerns. As it can be expensive and time-consuming to develop specific antiviral drugs, reuse of FDA-approved drugs that provide an opportunity to rapidly distribute effective therapeutics can allow to provide treatments with known preclinical, pharmacokinetic, pharmacodynamic and toxicity profiles that can quickly enter in clinical trials. In this study, using the structural information of molecules and proteins, a list of repurposed drug candidates was prepared again with the graph neural network-based GEFA model. The data set from the public databases DrugBank and PubChem were used for analysis. Using the Tanimoto/jaccard similarity analysis, a list of similar drugs was prepared by comparing the drugs used in the treatment of COVID-19 with the drugs used in the treatment of other diseases. The resultant drugs were compared with the drugs used in lung cancer and repurposed drugs were obtained again by calculating the binding strength between a drug and a target. The kinase inhibitors (erlotinib, lapatinib, vandetanib, pazopanib, cediranib, dasatinib, linifanib and tozasertib) obtained from the study can be used as an alternative for the treatment of COVID-19, as a combination of blocking agents (gefitinib, osimertinib, fedratinib, baricitinib, imatinib, sunitinib and ponatinib) such as ABL2, ABL1, EGFR, AAK1, FLT3 and JAK1, or antiviral therapies (ribavirin, ritonavir-lopinavir and remdesivir).Communicated by Ramaswamy H. Sarma.

2.
Comput Biol Chem ; 101: 107778, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2068836

ABSTRACT

The virus that causes Ebola is fatal. Although many researchers have attempted to contain this deadly infection, the fatality rate remains high. The atom-pair fingerprint technique was used to compare drugs suggested for the treatment of Ebola or those that are currently being tested in clinical settings. Subsequently, using scaffold network graph (SNG) methods, the molecular and structural scaffolds of the drugs chosen based on these similar results were created, and the drug structures were examined. Public databases (PubChem and DrugBank) and literature regarding Ebola treatment were used in the analysis. Graphical representations of the molecular architecture and core structures of the drugs with the highest similarity to Food and Drug Administration (FDA)-approved drugs were produced using the SNG method. The combination of molnupiravir, the first licensed oral medication candidate for COVID-19, and favipiravir, employed in other viral outbreaks, should be further researched for treating Ebola, as observed in our study. We also believe that chemists will benefit from understanding the core structure(s) of medication molecules effective against the Ebola virus, their inhibitors, and the chemical structure similarities of existing pharmaceuticals utilized to build alternative drugs or drug combinations.


Subject(s)
COVID-19 , Ebolavirus , Hemorrhagic Fever, Ebola , United States , Humans , Hemorrhagic Fever, Ebola/drug therapy , Pharmaceutical Preparations , Molecular Structure , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
3.
Elife ; 102021 08 03.
Article in English | MEDLINE | ID: covidwho-1339710

ABSTRACT

The discovery of a drug requires over a decade of intensive research and financial investments - and still has a high risk of failure. To reduce this burden, we developed the NICEdrug.ch resource, which incorporates 250,000 bioactive molecules, and studied their enzymatic metabolic targets, fate, and toxicity. NICEdrug.ch includes a unique fingerprint that identifies reactive similarities between drug-drug and drug-metabolite pairs. We validated the application, scope, and performance of NICEdrug.ch over similar methods in the field on golden standard datasets describing drugs and metabolites sharing reactivity, drug toxicities, and drug targets. We use NICEdrug.ch to evaluate inhibition and toxicity by the anticancer drug 5-fluorouracil, and suggest avenues to alleviate its side effects. We propose shikimate 3-phosphate for targeting liver-stage malaria with minimal impact on the human host cell. Finally, NICEdrug.ch suggests over 1300 candidate drugs and food molecules to target COVID-19 and explains their inhibitory mechanism for further experimental screening. The NICEdrug.ch database is accessible online to systematically identify the reactivity of small molecules and druggable enzymes with practical applications in lead discovery and drug repurposing.


Subject(s)
Drug Design , Drug Discovery/methods , Drug Repositioning , Pharmaceutical Preparations/metabolism , Animals , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Databases, Pharmaceutical , Drug-Related Side Effects and Adverse Reactions/etiology , Drug-Related Side Effects and Adverse Reactions/metabolism , Fluorouracil/chemistry , Fluorouracil/metabolism , Humans , Pharmaceutical Preparations/chemistry , Workflow , COVID-19 Drug Treatment
4.
J Biomol Struct Dyn ; 40(1): 523-537, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-748265

ABSTRACT

The outbreak of the recent coronavirus (SARS-CoV-2), which causes a severe pneumonia infection, first identified in Wuhan, China, imposes significant risks to public health. Around the world, researchers are continuously trying to identify small molecule inhibitors or vaccine candidates by targeting different drug targets. The SARs-CoV-2 macrodomain-I, which helps in viral replication and hijacking the host immune system, is also a potential drug target. Hence, this study targeted viral macrodomain-I by using drug similarity, virtual screening, docking and re-docking approaches. A total of 64,043 compounds were screened, and potential hits were identified based on the docking score and interactions with the key residues. The top six hits were subjected to molecular dynamics simulation and Free energy calculations and repeated three times each. The per-residue energy decomposition analysis reported that these compounds significantly interact with Asp22, Ala38, Asn40, Val44, Phe144, Gly46, Gly47, Leu127, Ser128, Gly130, Ile131, Phe132 and Ala155 which are the critical active site residues. Here, we also used ADPr as a positive control to compare our results. Our results suggest that our identified hits by using such a complicated computational pipeline could inhibit the SARs-CoV-2 by targeting the macrodomain-1. We strongly recommend the experimental testing of these compounds, which could rescue the host immune system and could help to contain the disease caused by SARs-CoV-2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Humans , Immune System , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL